
ESR Business Intelligence Quick Reference Guide 5.0 NHS Central Team

ESR Business Intelligence Quick Reference Guide for
BI Administrators

Author: James Haddon
Reviewers: NHS Development Team

Change Record
Date Author Version Change Reference

28/12/2012 James Haddon 0.1 Initial draft

19/03/2013 James Haddon 0.2 Updated to include useful calculations

22/03/2013 James Haddon 1.0 Initial release

07/05/2013 James Haddon 2.0 Update to include HTML

20/06/2019 Chris Holroyd 4.0 Update following developments

01/03/2025 Matt Madya 5.0 Update following developments

Creating a new Analysis

1 Select New -> Analysis

2 Select the relevant Subject Area

3 Double-Click (or drag & drop) required fields

into analysis.

4 Create a filter to filter the results

5 Click the results tab to see the results.

6 Save your analysis for later use.

Adding a Chart to an Analysis

1 From the Result tab of an Analysis click the new icon,
select graph then the type of graph needed.

2 The chart will be displayed beneath your current data.

Press the ‘x’ icon on the table of data to hide it if
needed. Don’t worry – you can easily retrieve this
later.

3 Your chart is now displayed on its own. To alter the
chart options click on the edit icon

4 You may now edit the size, data included and colours

of the chart. All charts should follow the NHS colour
scheme guidelines available here.

5 Click the ‘Done’ button, then save your analysis for
later use.

Creating a new Dashboard

1 Select New -> Dashboard

2 Complete the name and description fields,

and set the location of your new dashboard.

3 Drag Columns and Sections into the

dashboard to arrange your analyses.

4 Drag your analyses into the sections created

above.

5 Click ‘Run’ to run your dashboard

https://www.england.nhs.uk/nhsidentity/identity-guidelines/colours/

Available Analysis Logos. Usage: fmap:images/image_name.jpg

Reference: http://obiee101.blogspot.co.uk/2011/08/obiee11g-report-logos.html

http://obiee101.blogspot.co.uk/2011/08/obiee11g-report-logos.html

Useful Functions. Full documentation available here.

Conversion Functions

Function Syntax Example
CAST: Changes the data type of an
expression to another data type.
data_types = CHARACTER, VARCHAR,
INTEGER, FLOAT, SMALLINT, DOUBLE
PRECISION, DATE, TIME,TIMESTAMP,
BIT, BIT VARYING

CAST(expr AS
data_type)

CAST(staffgroup AS CHAR)

IFNULL: Tests if an expression evaluates
to a null value, and if it does, assigns
the specified value to the expression.

IFNULL(expr, value) IFNULL(FTE,0)

Date/Time Functions

Function Syntax Example
CURRENT_DATE: Returns the
current date.

CURRENT_DATE CURRENT_DATE

DAYNAME: Returns the name of
the day of the week for a
specified date.

DAYNAME(dateExpr) DAYENAME(startDate)

MONTHNAME: Returns the
name of the month for a
specified date.

MONTHNAME(dateExpr) MONTHNAME(startDate)

WEEK_OF_YEAR: Returns a
number (between 1 and 53)
corresponding to the week of the
year for the specified date.

WEEK_OF_YEAR(dateExpr) WEEK_OF_YEAR(startDate)

DAYOFMONTH: Returns the
number corresponding to the day
of the month.

DAYOFMONTH(dateExpr) DAYOFMONTH(startDate)

TIMESTAMPADD
Adds a specified number of
intervals to a specified
timestamp, and returns a single
timestamp. Adding a week
translates to adding seven days,
and adding a quarter translates
to adding three months. A
negative integer value results in a
subtraction (such as going back in
time).

TIMESTAMPADD(interval,
intExpr, timestamp)
Intervals =
SQL_TSI_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR

This example asks for the
resulting timestamp when 3
days are added to 2000-02-27
14:30:00. Since February, 2000 is
a leap year, the query returns a
single timestamp of 2000-03-01
14:30:00.

TIMESTAMPADD(SQL_TSI_DAY,
3, TIMESTAMP'2000-02-27
14:30:00')

Function Syntax Example
TIMESTAMPDIFF: Returns the
total number of specified
intervals between two
timestamps.

TIMESTAMPDIFF(interval,
timestamp1, timestamp2)
Intervals =
SQL_TSI_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR

Difference in days between
timestamps 1998-07-31
23:35:00 and 2000-04-01
14:24:00. It returns a value of
610. Notice that the leap year in
2000 results in an additional day.
TIMESTAMPDIFF
(SQL_TSI_DAY,
TIMESTAMP'1998-07-31
23:35:00',TIMESTAMP'2000-04-
01 14:24:00')

String Functions

Function Syntax Example
CHAR_LENGTH: Returns the length,
in number of characters, of a
specified string. Leading and trailing
blanks are not counted in the length
of the string.

CHAR_LENGTH(strExpr) CHAR_LENGTH(orgName)

CONCAT: Concatenates two
character strings

CONCAT(strExpr1,
strExpr2)

CONTACT(firstName,lastName)

INSERT: Inserts a specified character
string into a specified location in
another character string.

INSERT(strExpr1,
integer1, integer2,
strExpr2)

In the first string, starting at the
second position, three
characters (the numbers 2, 3,
and 4) are replaced by the string
abcd.
INSERT('123456', 2, 3, 'abcd')
Result: 1abcd56

LEFT: Returns a number of
characters from the left of a string.

LEFT(strExpr, integer) LEFT('123456', 3)
Result:123

LENGTH: Returns the length, in
number of characters, of a string.

LENGTH(strExpr) LENGTH(‘abcd’)
Result: 4

LOCATE: Returns the numeric
position of a character string in
another character string. If the
string cannot be found, 0 is
returned.

LOCATE(strExpr1,
strExpr2 [, integer])
strExpr1 = needle
strExpr2 = haystack

LOCATE('d', 'abcdef')
Result: 4
LOCATE('g', 'abcdef')
Result: 0

REPLACE: Replaces one or more
characters from a character
expression with one or more other
characters.

REPLACE(strExpr1,
strExpr2, strExpr3)

Replace('abcd1234', '123', 'zz')

Result: abcdzz4

http://docs.oracle.com/cd/E23943_01/bi.1111/e10544/appsql.htm#autoId30

SUBSTRING: Creates a new string
starting from a fixed number of
characters into the original string.

SUBSTRING(strExpr
FROM
starting_position)

SUBSTRING(‘ABCDE’ FROM 2)
Result: BCDE

Aggregate Functions

Function Syntax Example
AGGREGATE AT: Aggregates columns
based on the level or levels you
specify.

AGGREGATE(expr AT
level [, level1,
levelN])

AGGREGATE(sales AT Year)

AVG: Calculates the average (mean)
value of an expression in a result set.

AVG(numExpr) AVG(FTE)

BOTTOMN: ranks the lowest n values
of the expression argument from 1 to
n, 1 = the lowest numeric value.

BOTTOMN(numExpr,
integer)

BOTTOMN(absenceDays, 10)

COUNT: Calculates the number of
rows having a nonnull value for the
expression

COUNT(expr) Count(empNo)

COUNTDISTINCT: Count the number of
distinct values in a result set.

COUNT(DISTINCT
expr)

COUNT(DISTINCT empNo)

COUNT(*): Counts the number of
rows.

COUNT(*) COUNT(*)

MIN: Calculates the minimum value
(lowest numeric value) of the rows.

MIN(numExpr) MIN(absDays)

MAX: calculates the maximum value
(highest numeric value) of the rows.

MAX(numExpr) MAX(absDays)

MEDIAN: Calculates the median
(middle) value of the rows satisfying
the numeric expression argument.
When there are an even number of
rows, the median is the mean of the
two middle rows.

MEDIAN(numExpr) MEDIAN(absDays)

RANK: calculates the rank for each
value satisfying the numeric
expression argument. The highest
number is assigned a rank of 1, and
each successive rank is assigned the
next consecutive integer (2, 3, 4,...). If
certain values are equal, they are
assigned the same rank (for example,
1, 1, 1, 4, 5, 5, 7...).

RANK(numExpr) Rank(empScore)

STDDEV: returns the standard
deviation for a set of values. If ALL is
specified, the standard deviation is
calculated for all data in the set.

STDDEV([ALL |
DISTINCT] numExpr)

STDDEV(empScore)

SUM: Calculates the sum obtained by
adding up all values

SUM(numExpr) SUM(empScore)

TOPN: Ranks the highest n values of
the expression argument from 1 to n,
1 = the highest numeric value.

TOPN(numExpr,
integer)

Top 10 rows by absence days:

TOPN(absDays, 10)

Colour Palette

Colour Palette

Useful Calculations

Calculation Description
Repository Variable: CURRENT_DATE Returns the current system date
TIMESTAMPADD(SQL_TSI_DAY, -1,
CURRENT_DATE)

Yesterday

TIMESTAMPADD(SQL_TSI_MONTH, -1,
TIMESTAMPADD(SQL_TSI_DAY , DAYOFMONTH(
CURRENT_DATE) * -(1) + 1, CURRENT_DATE))

First day of previous month

TIMESTAMPADD(SQL_TSI_DAY , DAYOFMONTH(
CURRENT_DATE) * -(1) + 1, CURRENT_DATE)

First day of current month

TIMESTAMPADD(SQL_TSI_MONTH, 1,
TIMESTAMPADD(SQL_TSI_DAY , DAYOFMONTH(
CURRENT_DATE) * -(1) + 1, CURRENT_DATE))

First day of next month

TIMESTAMPADD(SQL_TSI_DAY , -(1),
TIMESTAMPADD(SQL_TSI_DAY , DAYOFMONTH(
CURRENT_DATE) * -(1) + 1, CURRENT_DATE))

Last day of previous month

TIMESTAMPADD(SQL_TSI_DAY , -(1),
TIMESTAMPADD(SQL_TSI_MONTH , 1,
TIMESTAMPADD(SQL_TSI_DAY , DAYOFMONTH(
CURRENT_DATE) * -(1) + 1, CURRENT_DATE)))

Last day of current month

TIMESTAMPADD(SQL_TSI_DAY , -(1),
TIMESTAMPADD(SQL_TSI_MONTH , 2,
TIMESTAMPADD(SQL_TSI_DAY , DAYOFMONTH(
CURRENT_DATE) * -(1) + 1, CURRENT_DATE)))

Last day of next month

SELECT CASE WHEN 1=0 THEN "Time"."Date"
ELSE TIMESTAMPADD(SQL_TSI_MONTH, -12,
CURRENT_DATE) END FROM "Human Resources
- Workforce Profile"

Default a date in prompt (today – 12
months in this example)

Best Practice

Dashboard Layout

Title / Prompts: Give each dashboard page a title, in title case. Ensure prompts
are provided horizontally across the top of the dashboard taking up as little
space as possible.

If you have a large number of prompts, you may wish to make the section
collapsible. Always include an ‘Apply’ and ‘Reset’ button for prompts.

Screen Resolution: Always build / configure your dashboards with a resolution of
1024x768 in mind as this is the most common resolution for desktop PCs. If you
know your organisation uses a different resolution, ensure you conform to this.

Report Links: Include links that users will actually need to use, and not all links.
Try to keep the number of ‘options’ a user has to a minimum in a simple
dashboard.

Supporting Text: Dashboard developers are able to add ‘Static Text’ areas to
dashboards. If you have complex analyses in a dashboard, think about including
a static text area to help users understand what is being shown to them.

HTML: HTML can be added to dashboards and analyses to support users in using
the system. For example –hyperlinks can be added to a page to direct users to an
external site or document.

There are no restrictions on the links that can be added to BI – BI Administrators
must ensure any HTML used has been checked and where external links are used
they are checked regularly to ensure they do not misdirect users to potentially
unsafe sites. Organisations are responsible for the HTML used in any locally
created dashboards and must be aware that the use of HTML in dashboards is
not supported.

Analysis Design

Colour Scheme: Always use the colour scheme to base your charts on. Try to
ensure that colours used have the same or similar meanings on all analyses.

Prompts: Where possible, try not to include prompts for individual analyses.
Users will find it easier to complete all prompts in one place (i.e. at the top of the
dashboard) rather than having to complete them several times for each analysis.

Filters: Where possible, try to
create a ‘Saved’ filter that you
can apply to all of your
dashboards, rather than creating
the same filter multiple times.
This also helps when drilling
from one dashboard to another

as any ‘Prompted’ filters take values from the drilled-from dashboard.

Action Links: By default, some data items will have ‘drillable’ functionality
included. This may not always be right for your analysis (for example, you may
wish the user to be navigated to a different dashboard rather than drilling on the
same analysis). Try to create a ‘Repository’ of action links to use in your
dashboards rather than creating a new action link for each one.

Formatting: Where possible, use the ‘Format Copy’ functionality to copy
formatting from one analysis to another. Not only does this reduce your
workload, it also ensures analyses are formatted in the same way to make them
easy to understand.

Analysis Criteria

Reduce Data with Filters: ESRBI is provided to enable users to see an easy view

aggregated data to enable them to make business decisions. ESRBI is not

provided as an ‘Export’ tool to export large amounts of data. When creating

analyses, limit and appropriately aggregate your data to ensure your dashboards

are usable and performant.

