

ESRBI Advanced Report Writing
Workshop

Script

Introduction (00:00 – 01:02)

Hello, welcome to the ESR Business Intelligence webinar workshop on advanced
report writing, my name is Christopher Holroyd and this webinar follows on from the
basic report writing and the intermediate report writing webinars we hosted in
autumn 2020. We will run through some of the more advanced techniques and
functions available in ESRBI and also why you may use some of these functions
including problems that can be solved using some of the functions covered today.
Hopefully you may hey get some ideas when designing your own analyses and
dashboards

Agenda (01:02 – 02:28)

Here is the agenda we are going to cover today starting with commonly used
functions in ESRBI including aggregate functions, calendar date functions and
expressions. We will then cover dynamic date filtering which is one of the questions
we have been asked in advance of the workshop and then lastly, we will cover
filtering based on the results of another analysis. With all these topics we will try to
cover some of the problems you may solve using these techniques as well as using
the techniques themselves.

Aggregate Functions

SUM BY (02:28 – 10:08)

Ok we are in ESR Business Intelligence, we are using the BI Administration URP
and we are using a training environment so all the data is fictitious. The first thing
we're going to look at is a couple of aggregate functions including SUM and RANK
however we going to take the functions to step further by including the BY clause.
We're going to build a basic analysis here and filter the date as should always be
done when creating an analysis. We are going to enter some assignment details
including assignment number and assignment FTE. We run it and look at the
data, we return a list of assignments and FTE values. When we look at the sum
function that we going to look at introducing the BY clause so we will be grouping by
a specific level. It's something we get asked about quite a lot and in this example we
will be by grouping by staff group, occupation code and job role however it's the
same principle when grouping by multiple organisation levels. You may wish your

data to be summed by a specific level but include levels with a lower granularity, in
our example we are going to sum by staff group but include items of lower
granularity such as occupation code and job role. It's the same principle if you are
looking to sum by an organisation level higher up the hierarchy but also include
organisation levels lower down the hierarchy. The values we are going to sum are
assignment fte values. Including staff group within the analysis you can see
assignment FTE values are still returned per assignment because there is no
aggregation on the FTE values. We now going to put some aggregation on the FTE
values and whenever we using a function in ESRBI we always try to highlight the
function button in the lower left corner when editing a formula. Clicking on the
button gives you a list of all the available functions, we are looking at aggregate
functions so we will open up the aggregate folder. If we click on a function you are
given a description of what it does which is helpful. You are also presented with
how to set up the function within the formula. We will put the sum into the formula
and test the results. Looking at the results we now return a sum of FTE by staff
group. The sum function always groups to the lowest level of granularity within the
analysis, in our case staff group. At this stage we could just use the Total FTE
measure which would do exactly the same thing as our sum function. What we are
going to do is fix the grouping level within our sum function so where the Total FTE
fact will always group to the lowest level of granularity, our sum function will group to
our choice of granularity. We will set the group by within the sum function. What
we've done here is added job role to the analysis and you can see the sum function
sums to the job role field which is lower granularity than the staff group. If we put in
occupation code the sum will group to occupation code field which is lower
granularity than both staff group and job role. We want to group by staff group but
leave occupation code and job role within the analysis and to do that we enter a by
clause. To do that we add BY and the field we would like to group by. We run and
test the report, you will see we return repeating values but the values are summed
by the staff group field correctly. We are introducing the BY clause because we are
going to use it in further examples throughout the webinar.

RANK BY (10:08 – 17:50)

The second function we are going to look at is the rank function. We are going to
use it to resolve a problem we get asked about quite regularly which is how do I
remove multiple rows per employee or assignment etc. Using aggregation is a way
we can remove multiple rows. We are building a new report based on the absence
subject area which enables us to return multiple absences per assignment. The
method is exactly the same were we to use EIT information such as professional
registrations, DBS or appraisal information. We will set up a basic absence analysis
using a date period and enter some basic assignment and absence information. We
will test the results and we can see a number of assignments are returned with
single absences and towards the bottom some are returned with multiple
absences. the problem we are going to see how we return the latest absence
records. Again, the method is the same whether we were returning the latest
absence record or the latest created date record or the latest last updated date
record. We will add absence start date into the report again so we can set up a

custom formula. We are back in the functions folder within the aggregate folder, we
will find the rank function and we will have a look at the description. In summary the
rank function is designed to return a numerical value for the field you are ranking, in
our case we are ranking a date field so the latest date will return 1, the second latest
will return 2 etc. We can update the formula, set the column heading and test the
results. And we can see the results returned look a little strange, we have some very
large numbers but when we think about it we have asked BI to rank all the absence
start dates rather than start date per assignment number. So we need to use the by
clause again to ensure that the aggregation is grouped by the item as required, in
this case assignment number. To update the formula it's the same method as
updating the sum formula, before the close bracket we simply add in BY and the field
we would like to group by. We then test the results and we can see the data looks as
required. Looking at the example with seven absence records we can now see we
return 1 to 7 for the single assignment. The last step in the process is we can filter
for the bottom row which returns 1 in the rank column and that will ensure that we
only return the latest absence start date row per assignment across the entire
dataset. We add a filter based on the column and set the filter up to only return rows
where the value is 1. Now checking the results we can see per assignment only one
row is returned which is the latest absence start date row. Lastly we could remove
our workings if required because we have a filter in place and so the column is no
longer required.

Date Functions

TIMESTAMPADD (17:50 – 25:00)

The next topic we are going to cover is date functions. The two date functions we
are going to look at are Timestampadd and Timestampdiff. On their own these
functions are quite straightforward, but we are going to look at how we can use them
together to return more complex results. As before we can check the functions
folder and if we look at the date folder towards the bottom we can see
Timestampadd and TImestampdiff. To start with we are going to look that how we
enter a date into a formula within ESRBI. There is a specific way to enter a date
which we will enter now. TIMESTAMP ‘2020-01-01 00:00:00’. We will now enter a
date filter which is different to entering a date in the column, the two are separate.
We will filter for the date the video was taken which is 05/08/2021. Ok the next thing
we are going to look at is using the Timestampadd function. If we go back into the
folder and have a look at the setup we can see the function is in three parts the first
part is the interval and we can set an interval to whatever we like, day, month, year
or second etc and it is always entered as SQL_TSI_DAY or SQL_TSI_MONTH
etc. The second part of the function is how many intervals we would like to move e.g
-7, +7, -10 or +10 as required and the final part of the function is the starting
timestamp (date). If we check the results you can see we have now moved the date
back 7 days. The next thing we will look at is changing timestamp from a fixed date
to a more dynamic date, to do this we will use a function called current_date which
simply returns the current date. If we check the results we should now be moving
back 7 days from the current date rather than the fixed date we entered. The

current date of this report is 05/08/2021 so we can see the formula is working
correctly.

TIMESTAMPDIFF (25:00 – 28:00)

The next thing we will look at is using the Timestampdiff function. If we have a look
in the function folder we can see the setup which is similar to timestampadd. We
need to add an interval and then a from and a to date. The function will then return
the number of intervals between the two dates. We will enter the formula now,
setting our interval, our from date and our to date. If we test the results we can see
the formula is working as expected. We can go back to the criteria page and update
the formula, changing the interval and test the results again.

Time.Date (28:00 – 32:00)

The next item we are going to look at is using time.date. We can see that we are
filtering time.date for 05/08/2021 so we know time.date will always equal that date
and we can use this within our formulas to make them more dynamic. Rather than
including a fixed date in the formula we can use time.date which will then change
depending on how we filter the time.date (effective date) of the analysis. Where we
may use dashboard prompts and set up filters to work with dashboard prompts we
are then able to use the date set in the dashboard prompt within our formulas which
makes the formula even more dynamic. So we will add time.date to our formula,
check the results and we can see that update is returned as per the filter we have
setup. The next thing we can do is add time.date to our timestampadd formula and
we return time.date -7 days in our results. Lastly we can add time.date to our
timestampdiff formula. Now imagine we have set the filter to Is Prompted and we
are using this analysis within a dashboard. We have set up a prompt so our users
can change the effective date of the analysis, by including time.date within our
formulas they are dynamically updated depending on what our users have entered
into the dashboard prompt, rather than having fixed dates within the formula.

Expression Function

CASE (32:00 – 44:55)

Now we are going to look at using an expression function. The function we are
going to look at is the CASE statement. If anyone has used the IF function in Excel
it is very similar. It is a straightforward function but we will look at how we can use it
embedded within other case functions. Lastly we will then look at how we have
used it within a formula in the NHS standard dashboards. We will set up a quick
case statement here, CASE WHEN 1=1 THEN….. If we look within the functions
folder, we get a description of how to use a case statement. In our example we are
going to use the case statement within a case statement so Case When 1 = 1
then… here we can use this second case statement Case When 2 = 3 then... and
build up a more complex case statement. As long as each Case statement is ended
properly then the formula will work correctly. We're now going to look at how we
have used some of the examples we have gone through within a formula in the NHS

Standard Dashboards. The formula we going to look at is the average hours
worked formula within the working time regulation report. Rather than being based
on a calendar date (time.date) it is based on a payroll period or an accounting
period and this is important because this is used this within the formula we are going
to look at. So if we open up the average hours worked formula we will attempt to
simplify and understand the formula. This is something we get asked about quite a
lot, “I have found a formula in an NHS Standard Dashboard but I'm not sure where to
start with understanding how it works”. When we actually look at the formula we
can see that it is actually a series of SUMs, Case Statements and other simple
functions but used together to create a more complex formula. So we will have a
look at how we can break this formula down. If we look at the bottom of the formula
we can see there is a group by clause ‘BY assignment number’ so we can split the
formula out to start with by placing the sum on the top row and the by assignment
number on the bottom. We know everything in the middle is being summed by
assignment number. If we start splitting out the case statements we can see the
first case statement relates to weekly payrolls, we can then split out the next sum
and next Case statement and we find the next By clause which relates to the Sum
and so we can see the Case statement is being summed itself by assignment
number. The next function we can see is a Count of Period End Dates and that
makes sense because we need to divide the units worked by the number of Payroll
Periods the report is running for. We then come to an ELSE which relates to the
original Case statement and if we look over the next few rows we can see they are
the same as the earlier rows, the only difference being the count of payroll periods is
÷ 12 x 52.1428. This is because the second half of the case statement relates to
monthly payrolls which need to be annualised and divided by the number of weeks in
the year. We can then come back to the original Sum which ensures we get average
hours worked grouped per assignment.

Dynamic Dates (44:55 – 01:11:38)

We are now going to look at some dynamic dates following on from the date
functions we looked at earlier. We will cover using dynamic dates within formulas
and also filtering using dynamic dates and dynamic date periods. If we set up a
basic report the most simple of all dynamic dates is the current_date function and we
can see that here. The current date for this recording is 09/08/2021. We are also
going to filter the report using current date, this ensures that dynamically, whenever
the report is run the data is correct as at the current date. To do this we select add
more options in the filter setup up and select SQL expression, then we enter current
date as the value. If we add time.date into the report we can prove the filtering is
working correctly. This is useful when you want to test the date dimension
filtering. Ok so what do we mean when we say dynamic dates, well some of the
examples we are going to look at now are first day of previous month, last day of the
previous month and last full 12-month period (where we are reporting over a period
for things like staff movements or absence reporting). Often the easiest way to do
this is to use formulas that have already been written. The NHS Central Team has
produced a quick reference guide which is available on the ESR Hub and contains a
number of pre-written formulas for dynamic dates. The easiest way to use these

formulas is to copy them straight out of the document and put them into ESRBI and
you can see that is being done here. Now if we have a look at this formula you can
see it is made up of basic functions, nothing we haven't covered already today. If we
test the results you can see that the formula is returning the last day of previous
month based on the current date. If we have a look at how this formula is put
together, we have an initial timestampadd, an interval which is day, then we have a
comma and then we have minus 1 so we are going back one day from whatever
comes next. And what comes next is another timestampadd so just as we did with
the Case statement we have embedded a timestampadd within another
timestampadd. If we ignore the first row and look at the second timestampadd, we
have our day interval then we have our integer which is actually day of month
function which simply returns the day of the month, in our case 9. If we look at the
next part it's -1 which simply turns 9 into -9 then we have plus 1 which gives us -8, so
we know the whole row evaluates to -8. If we use -8 within the second
timestampadd we can see that we are moving back 8 days from the current date
which will always return the first of the month given the current date is the 9th. So
we know the lower three rows of this formula will always return the first of the
month. If we then use this within the first timestampadd, all we are doing his moving
back one day from the first of the month to give us the last day of the previous
month. We are using simple functions in interesting ways to provide more complex
results. If we now update the time.date filtering to 01/01/2020 we can see that our
last day of previous month formula is working independently of the time dimension
filter. It is working based on current date. If we now look at adding time.date into
the formula our last day of previous month updates in line with our time dimension
filter and becomes more dynamic. We simply need to replace any instance of
current_date with time.date. If we don't change the time dimension filtering we can
see our formula updates in line with the filter. We will now pick another formula from
the document, first day of previous month and we will build up to a dynamic period
rather than single date. Currently this is based on current date but if we want it to
work with our time dimension filtering we replace current_date with time.date and the
results return as we require. We will now look at using the last day of previous
month formula within a filter. To do that we need to ensure time.date is not included
in the formula because we are trying to filter time.date so we set the formula back to
current_date. We copy the formula from the column and paste it into the SQL
expression box. We now know whenever this report is run it will always be correct
as at the last day of the previous month in terms of the effective date. We can test it
removing all columns except time.date which shows that the report is filtering
correctly. If we now look at filtering for a period we need to set up the filter with an
operator Is Between and ensure we add a second SQL expression option, this then
becomes the from and the to date. In our example we will leave the from date as
last day of previous month and add the to date as current date. The results show we
are now returning a date period rather than a single effective date. If we pick one
more example and put in last day of current month we can test the results. Finally we
are going to look at dynamic dates within dashboard prompts and setting up prompts
so there is no reason for our users to change the date, by default have the required
date as the default date. We are setting up an example dashboard prompt based on
time.date and we will set a simple fixed default date and then a more dynamic

default date. In the example on-screen we have setup a basic prompt with no
default value. To set a default value open up the options and select the type of
default value we wish to set. We can set a fixed date and test it in the example
prompt. If we select reset to default values, we can see the default is
displayed. Where we want to set default values for dynamic dates we can select
SQL results. We need to enter SELECT then we can add a fixed date if we want to
and then we need to add FROM and the subject area in this format. We are
entering a fixed date to start with to ensure the SQL works, we can then enter our
dynamic date formula. We can test it and we can see it is working as required. The
last thing we are going to look at is a dynamic period, we need to set the operator to
Is Between and we are presented with two SQL results boxes. These are now our
from and to date. We will copy the last day of previous month formula into the to
date box and change the from date SQL. We are going to set the period to the last
full 12 months so to achieve this we need to change the from date to 364 days prior
to the to date. We can simply add another timestampadd function around our to
date moving it back 364 days and it becomes our dynamic from date. If we check
the default values we can see our prompt will now always return a full 12-month
period meaning there is less chance of user error when setting date values.

Filtering based on the results of another analysis (01:11:38 – 01:21:15)

We will now look at filtering based on the results of another analysis and some of the
reasons you may use this function. If we set up a basic analysis with a time period
of 31 days, we save this analysis and call it the parent. We will now update the date
filter to return just the first week of the month. We will save this and call it the
child. If we now go into the catalog and open up the parent analysis, we can set up
a new filter with an operator of based on the results of another analysis. We need to
select the child analysis in this instance, change the operator to ‘is not equal to’ and
there is only one field so we can leave that as date. If we test the results we can
now see the values from the child analysis are removed or filtered out of the parent
analysis. That is a quick run through of how the functionality works, we will now look
at an example of how we have used it within in the NHS Standard Dashboards. The
NHS Standard Dashboard analysis we are going to look at is the NHS Position Detail
report. The problem to be solved with this report was that we are looking to return all
positions, and assignment information where it is present. To do that we need to use
two different subject areas, the Position Analysis subject area and the Workforce
Profile subject area. The Position Analysis subject area returns all positions
including vacant positions but returns no assignment information, the Workforce
Profile subject area returns populated positions along with assignment
information. We use a Union to combine the results but we needed to remove
populated positions from the position analysis side of the query because these are
returned in the workforce profile side. To do this we created a sub-analysis which is
a copy of the workforce profile side of the Union query. We used this to remove any
positions from the position analysis side of the query that appeared in the workforce
profile side. That way we are left with a distinct list of positions along with
assignment information where it is present. Other reasons to use this style of
filtering might be because you can't naturally join two subject areas together so to

filter an analysis based on a subject area using the results of another analysis based
on a different subject area can be achieved using this method. You may have two
analyses returning datasets based on the same subject area but you would like to
filter the datasets differently, then use one dataset as a filter for the other dataset,
this will be another reason to use the filtering based on the results of another
analysis. That is the end of the workshop, we hope you found that useful, thank you
and goodbye.

